- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Aspuru-Guzik, Alán (2)
-
Häse, Florian (2)
-
Adedeji, Folarin (1)
-
Cheatum, Christopher M. (1)
-
Christensen, Melodie (1)
-
Gakhar, Lokesh (1)
-
Gensch, Tobias (1)
-
Guo, Qi (1)
-
Hein, Jason E. (1)
-
Kohen, Amnon (1)
-
Major, Dan T. (1)
-
Pagano, Philip (1)
-
Ranasinghe, Chethya (1)
-
Robben, Kevin (1)
-
Roch, Loïc M. (1)
-
Schroeder, Evan (1)
-
Sigman, Matthew S. (1)
-
Wickersham, Kyle (1)
-
Ye, Hepeng (1)
-
Yunker, Lars P. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Autonomous process optimization involves the human intervention-free exploration of a range process parameters to improve responses such as product yield and selectivity. Utilizing off-the-shelf components, we develop a closed-loop system for carrying out parallel autonomous process optimization experiments in batch. Upon implementation of our system in the optimization of a stereoselective Suzuki-Miyaura coupling, we find that the definition of a set of meaningful, broad, and unbiased process parameters is the most critical aspect of successful optimization. Importantly, we discern that phosphine ligand, a categorical parameter, is vital to determination of the reaction outcome. To date, categorical parameter selection has relied on chemical intuition, potentially introducing bias into the experimental design. In seeking a systematic method for selecting a diverse set of phosphine ligands, we develop a strategy that leverages computed molecular feature clustering. The resulting optimization uncovers conditions to selectively access the desired product isomer in high yield.more » « less
-
Pagano, Philip; Guo, Qi; Ranasinghe, Chethya; Schroeder, Evan; Robben, Kevin; Häse, Florian; Ye, Hepeng; Wickersham, Kyle; Aspuru-Guzik, Alán; Major, Dan T.; et al (, ACS Catalysis)
An official website of the United States government
